
Online Stochastic Optimization Without Distributions

Russell Bent and Pascal Van Hentenryck
Brown University

Providence, RI 02912
{rbent,pvh}@cs.brown.edu

Abstract

This paper considers online stochastic scheduling prob-
lems where time constraints severely limit the number
of optimizations which can be performed at decision
time and/or in between decisions. Prior research has
demonstrated that, whenever a distribution of the in-
puts is available for sampling, online stochatic algo-
rithms may produce significant improvements in solu-
tion quality over oblivious approaches. However, the
availability of an input distribution, although reason-
able in many contexts, is too strong a requirement in
a variety of applications. This paper broadens the ap-
plicability of online stochastic algorithms by relaxing
this requirement and using machine learning techniques
or historical data instead. In particular, it shows that
machine learning techniques can be engineered to learn
the distribution online, when its underlying structure is
not available. Moreover, the paper presents the idea of
historical sampling which provides a simple and effec-
tive way to leverage historical data in continuous and
periodic online optimization. Experimental results on
packet scheduling and vehicle routing indicate the po-
tential of machine learning and historical sampling for
online scheduling.

Introduction
Online scheduling and routing problems arise naturally in
many application areas and have received increasing atten-
tion in recent years. Contrary to offline optimization, the
data is not available a priori in online optimization. Rather
it is incrementally revealed during algorithm execution. In
many online optimization problems, the data is a set of re-
quests (e.g., packets in network scheduling or customers in
vehicle routing) which are revealed over time and the algo-
rithm must decide which request to process next. In addi-
tion, time constraints typically restrict the number of opti-
mizations that can be performed at decision time and/or in
between decisions. Online problems of this kind arise in
many applications, including vehicle routing, taxi dispach-
ing, packet scheduling, and online deliveries. It is also useful
to distinguish two classes of such problems:continuousand
periodicoptimization. In continuous optimation, the online

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

algorithm is applied continuously or, at least, for very long
periods of time, as is typical in networking applications. In
periodic optimization, the online algorithm is applied repeat-
edly (e.g., every day) on a new instance, as is typically the
case in vehicle routing applications arising from courier ser-
vices.

Recent research (e.g., (Chang, Givan, & Chong 2000;
Bent & Van Hentenryck 2004b; 2004c; 2004d)) has demon-
strated the value of stochastic information for online
(countinuous and periodic) optimization. By assuming the
availability of a distribution of future requests, or an ap-
proximation thereof, online stochastic optimization algo-
rithms can be designed to improve the quality of the solu-
tions significantly, while making decisions within the time
constraints. Moreover, these algorithms only rely on the as-
sumption that the input distribution is a black box that can be
sampled, not on an intimate knowledge of the distribution.

The availability of a distribution that can be sampled is
a reasonable assumption in many contexts where predictive
models are available. However, for many other applications,
it may be unrealistic. This paper studies whether this as-
sumption can be relaxed and it focuses primarily on contin-
uous online optimization, although issues pertinent to peri-
odic online optimization are addressed whenever relevant.
To relax the assumption, the paper explores two orthogonal
directions: machine learning (ML) and historical data (HD).
The ML approach consists of learning the distribution on the
fly, during the online algorithm, given some partial knowl-
edge of its structure. The main contribution here is to adapt
traditional techniques from machine learning, such as belief
states and the Baum-Welsh algorithm, to learn the distribu-
tion fast enough under strict time constraints. The HD ap-
proach amounts to exploiting historical data gathered from
past instances (periodic optimization) or earlier inputs (con-
tinuous optimization). The main contribution in the HD ap-
proach is to present a novel technique,historical sampling,
which relies only on past or earlier inputs and assumes no
knowledge of the distribution. The only assumption under-
lying historical sampling is that the past is a reasonable pre-
dictor of the future.

The two approaches have been evaluated on packet
scheduling and vehicle routing applications, two applica-
tions where the value of stochastic information has been
clearly demonstrated. In packet scheduling, an application

initially proposed in (Chang, Givan, & Chong 2000), the
distributions are specified in terms of Markov Models (MM)
while, in vehicle routing, only historical data from previ-
ous days is available. The experimental results are partic-
ularly interesting. On packet scheduling problems, the ML
approach can be engineered to be sufficiently fast and pre-
cise so that online algorithms become essentially compara-
ble when using the exact or the learned distributions. More-
over, historical sampling, which is amazingly simple to im-
plement, is also shown to be comparable with the exact dis-
tribution. The value of historical sampling is also demon-
strated on vehicle routing, confirming its effectiveness of
both continuous and periodic applications. Interestingly,
historical sampling remains effective even if the historical
data is relatively small.

As a consequence, the paper demonstrates that online
stochastic optimization algorithms can be effective even
without distributions, broadening their applicability signifi-
cantly thanks to the use of machine learning or the exploita-
tion of historical data.

The rest of this paper is organized as follows. The first
three sections present the online stochastic framework, the
online stochastic algorithms, the sampling algorithm when
the distribution is known. The next three sections consti-
tute the core of the paper. They describe the ML and HD
approaches and their experimental results. The last section
concludes the paper.

The Online Stochastic Framework
This section presents the online stochastic framework in its
simplest form to crystallize the ideas. Its generalizations are
described in detail in (Bent & Van Hentenryck 2004a).

The Offline Problem The framework assumes a discrete
model of time and the offline problem considers a time hori-
zonH = [H, H] and a number of requestsR. Each request
r is associated with a weightw(r) which represents the gain
if the request is served. A solution to the offline problem
serves a requestr at each timet ∈ H and can be viewed
as a functionH → R. Solutions must satisfy the problem-
specific constraints which are left unspecified in the frame-
work. The goal is to find a feasible solutionσ maximizing

∑

t∈H

w(σ(t)).

In the online version, the requests are not available initially
and become progressively available at each time step. Note
that the framework assumes that a decision is taken at each
time step but it is not difficult to relax this assumption (Bent
& Van Hentenryck 2004a).

The Online Problem The online algorithms have at their
disposal a procedure to solve, or approximate, the offline
problem, as well as the distribution of future requests. The
distribution is considered as a black-box which is only avail-
able for sampling. Since, on continuous applications, it is
not practical to sample the distribution for the entire time

ONLINEOPTIMIZATION(H)
1 R← ∅;
2 w ← 0;
3 for t ∈ H
4 do Θ(t)← NEWREQUESTS(t);
5 R← AVAILABLE REQUESTS(R, t) ∪Θ(t);
6 r ← CHOOSEREQUEST(R, t);
7 SERVEREQUEST(r, t);
8 w← w + w(r);
9 R← R \ {r};

Figure 1: The Generic Online Algorithm

horizon, the desired size of the samples is a sampling argu-
ment.

Time Constraints Practical applications often include se-
vere time constraints on the decision time and/or on the time
between decisions. To model this requirement, the algo-
rithms may only use the offline procedureO times at each
time step.

Properties of the Framework The framework is general
enough to model a variety of practical applications, yet it
has some fundamental computational advantages compared
to other models.The key observation is that, in many practi-
cal applications, the uncertainty does not depend on the de-
cisions.There is no need to explore sequences of decisions
and/or trees of scenarios: the distribution can be sampled to
provide scenarios of the future without considering the de-
cisions. As a consequence, the framework provides signif-
icant computational advantages over more general models
such as multi-stage stochastic programming (Birge & Lou-
veaux 1997), which is an offline framework, and partially
observable Markov decision processes (POMDPs) (Kael-
bling, Littman, & Cassandra 1998), where the uncertainty
can depend on the decisions. As mentioned earlier, the
framework can be naturally extended to incorporate service
commitments, multiple decisions, and immediate decision
making (Bent & Van Hentenryck 2004a).

The Generic Online Algorithm The algorithms in this
paper share the same online optimization schema depicted in
Figure 1. They differ only in the way they implement func-
tion CHOOSEREQUEST. The online optimization schema
simply considers the set of available and new requests at
each time step and chooses a requestr which is then served
and removed from the set of available requests. Function
AVAILABLE REQUEST(R, t) returns the set of requests avail-
able for service at timet and functionSERVEREQUEST(r, t)
simply servesr at timet (σ(t)← r). To implement function
CHOOSEREQUEST, the algorithms have at their disposal two
black-boxes:

1. a functionOPTSOL(R, t) that, given a setR of requests
and a timet, returns an optimal solution forR over[t,∞];

2. a functionGETSAMPLE([t, ∆]) that returns a set of re-
quests over the interval[t, t + ∆] by sampling the arrival
distribution. The implementation of this black box is the
focus of the work presented here.

To illustrate the framework, we specify two oblivious algo-
rithms as instantiations of the generic algorithm. These al-
gorithms will serve as a basis for comparison.

Greedy (G): This algorithm serves the available request
with highest weight. It can be specified formally as

CHOOSEREQUEST-G(R, t)
1 return argmax(r ∈ R) w(r);

Local Optimal (LO): This algorithm chooses the next
request to serve at timet by finding the optimal solution for
the available requests att. It can be specified as

CHOOSEREQUEST-LO(R, t)
1 σ ← OPTSOL(R, t);
2 return σ(t);

Online Stochastic Algorithms
This section reviews the various online stochastic algorithms
considered in this paper. It starts with the expectation al-
gorithm, proposed for instance in (Chang, Givan, & Chong
2000), and shows how it can be adapted to incorporate time
constraints.

Expectation (E): Algorithm E chooses the action maxi-
mizing expectation at each time step. Informally speaking,
the method generates future requests by sampling and
evaluates each available request against that sample. A
simple implementation can be specified as follows:

CHOOSEREQUEST-E(R, t)
1 for r ∈ R
2 do f(r)← 0;
3 for i← 1 . . .O/|R|
4 do S ← R ∪ GETSAMPLE([t + 1, ∆]);
5 for r ∈ R
6 do σ ← OPTSOL(S \ {r}, t + 1);
7 f(r)← f(r) + w(r) + w(σ);
8 return argmax(r ∈ R) f(r);

Lines 1-2 initialize the evaluation functionf(j) for each re-
questr. The algorithm then generates a number of samples
for future requests (line 3). For each such sample, it com-
putes the setR of all available and sampled requests at timet
(line 4). The algorithm then considers each available request
r successively (line 5), it implicitly schedulesr at timet, and
applies the optimal offline algorithm usingS \ {r} and the
time horizon (line 6). The evaluation of requestr is updated
in line 7 by incrementing it with its weight and the score of
the corresponding optimal offline solution. All scenarios are
evaluated for all available requests and the algorithm then
returns the requestr ∈ R with the highest evaluation. Ob-
serve Line 3 of Algorithm E which distributes the available
optimizationsO across all available requestsR.

WhenO is small (due to the time constraints), each re-
quest is only evaluated with respect to a small number of
samples and the algorithm E does not yield much informa-
tion. This is precisely why online vehicle routing algorithms
(Bent & Van Hentenryck 2004c) cannot use E, since the

number of requests is very large (about 50 to 100), the time
between decisions is relatively short, and optimizations are
computationally demanding. To cope with time constraints,
two approximations of algorithm E, consensus and regret,
have been proposed.

Consensus (C): The consensus algorithm C was intro-
duced in (Bent & Van Hentenryck 2004d) as an abstraction
of the sampling method used in online vehicle routing (Bent
& Van Hentenryck 2004c). Its key idea is to solve each
scenario once and thus to examineO scenarios instead of
O/|R|. More precisely, instead of evaluating each possible
request at timet with respect to each sample, algorithm C
executes the offline algorithm on the available and sampled
requests once per sample. The request scheduled at timet
in optimal solutionσ is creditedw(σ) and all other requests
receive no credit. Algorithm C can be specified as follows:

CHOOSEREQUEST-C(R, t)
1 for r ∈ R
2 do f(r)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ GETSAMPLE([t + 1, ∆]);
5 σ ← OPTSOL(S, t);
6 f(σ(t))← f(σ(t)) + w(σ);
7 return argmax(r ∈ R) f(r);

Observe line 5 which calls the offline algorithm with all
available and sampled requests and a time horizon starting
att and line 6 which increments the number of times request
σ(t) is scheduled first. Line 7 simply returns the request with
the largest score. The main appeal of Algorithm C is its abil-
ity to avoid partitioning the available samples between the
requests, which is a significant advantage when the number
of samples is small and/or when the number of requests is
large. Its main limitation is itselitism. Only the best request
is given some credit for a given sample, while other requests
are simply ignored. It ignores the fact that several requests
may be essentially similar with respect to a given sample.
Moreover, it does not recognize that a request may never be
the best for any sample, but may still be extremely robust
overall.1

Regret (R): The regret algorithm shows how to gather that
kind of information from the sample solutions without solv-
ing additional optimization problems. Its key idea is to ap-
proximate the deviation of a request, i.e., the cost of schedul-
ing a suboptimal request at timet.

Definition 1 (Deviation) LetR be the set of requests at time
t and r ∈ R. The deviation ofr wrt R and t, denoted by
DEVIATION(r, R, t), is defined as

| w(OPTSOL(R, t))−(w(r)+w(OPTSOL(R\{r}, t+1))) | .

1The consensus algorithms behaves very well on many vehicle
routing applications because, on these applications, the objective
function is first to serve as many customers as possible. As a conse-
quence, at a time stept, the difference between the optimal solution
and a non-optimal solution is rarely greater than 1. It is over time
that significant differences between the algorithms accumulate.

Algorithm R is the recognition that, in many applications,
it is possible to estimate the deviation of a requestr at time
t quickly. In other words, once the optimal solutionσ of
a scenario is computed, it is easy to compute the deviation
of all the requests, thus approximating E with one optimiza-
tion. This intuition can be formalized using the concept of
regret.

Definition 2 (Regret) Given a requestr, a setR (r ∈ R),
a time t, , and an optimal solutionσ = OPTSOL(R, t), a
regret is an upper bound to the deviation ofr wrt R and t,
i.e.,

REGRET(r, R, t, σ) ≥ DEVIATION(r, R, t).

Moreover, there exist two functionsfo andfr such that

• OPTSOL(R, t) runs in timeO(fo(R, ∆));
• REGRET(r, R, t, σ) runs in timeO(fr(R, ∆));
• |R|fr(R, ∆) is O(fo(R, ∆)).

Intuitively, the complexity requirement states that the
computation of the|R| regrets does not take more time
than the optimization. Regrets typically exist in practical
applications. In an online facility location problem, the
regret of opening a facilityf can be estimated by evaluating
the cost of closing the selected facilityσ(t) and opening
f . In vehicle routing, the regret of serving a customerc
next can evaluated by swappingc with the first customer
on the vehicle servingc. In packet scheduling, the regret
of serving a packetp can be estimated by swapping and/or
serving a constant number of packets. In all cases, the
cost of computing the regret is small compared to the
cost of the optimization and satisfy the above require-
ments. Note that there is an interesting connection to
local search, since computing the regret may be viewed
as evaluating the cost of a local move for the application
at hand. We are now ready to present the regret algorithm R:

CHOOSEREQUEST-R(R, t)
1 for r ∈ R
2 do f(r)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ GETSAMPLE([t + 1, ∆]);
5 σ ← OPTSOL(S, t);
6 f(σ(t))← f(σ(t)) + w(σ);
7 for r ∈ READY(R, t) \ {σ(t)}
8 do f(r)← f(r) + (w(σ)− REGRET(σ, r, R, t));
9 return argmax(r ∈ R) f(r);

Its basic organization follows algorithm C. However, instead
of assigning some credit only to the request selected at time
t for a given samples, algorithm R (lines 7-8) uses the re-
grets to compute, for each available requestr, an approx-
imation of the best solution ofs servingr at time t, i.e.,
w(σ) − REGRET(σ, r, R, t). Hence every available request
is given an evaluation for every sample at timet for the cost
of a single optimization (asymptotically). Observe that al-
gorithm R performsO optimizations at timet.

Sampling
To describe the stochastic algorithms entirely, it is neces-
sary to specify functionGETSAMPLE, i.e., how to gener-

1

2

3

b: .60

a: .02

a: .95

b: .30

a: .05

b: .02

b: .01

a: .50

b: .25

a: .10

b: .15

a: .05

Figure 2: Example Markov Model

ate samples from the distribution. To make the presenta-
tion concrete, this paper assumes that the underlying dis-
tribution of the requests is a Markov model (Feller 1957),
although the principles can easily be adapted to a variety
of distributions. In addition, the paper assumes for simplic-
ity that the structure of the Markov model directly reflects
the uncertainty present in the online stochastic optimization
framework. More precisely, each states ∈ S in the Markov
model represents a different arrival probability for the re-
quests and the transitionsT (s1, s2) between statess1 ands2

represent changes in the arrival rates of the requests. Finally,
the transition functionT is augmented by a third parameter
specifying the set of requests generated by a transition. Thus
T (s1, s2, w) represents the probability of going froms1 to
s2 and producing outputw. Observe that a transition (pos-
sibly a self-transition) is taken at every time stept in order
to generate the requests. Figure 2 provides an example of
such a Markov model, with two possible outputs, the set of
requestsa and the set of requestsb.

Given these assumptions, it is easy to specify function
GETSAMPLE for fully observable distributions:

GETSAMPLE-FO(t,∆)
1 return RANDOMWALK(St, ∆);

The algorithm simply performs a random walk of∆ steps in
the Markov model beginning at the state observed at timet.
The random walk is specified as

RANDOMWALK(s, ∆)
1 R← ∅;
2 for i← 1 . . . ∆
3 do < s, s′, w >← SELECTRANDOMTRANSITION(s, T);
4 R← R ∪ w;
5 s← s′;
6 return R;

where lines 2-5 walk through the Markov model for∆ steps.
Line 3 chooses a transition at random based on the current
state and the transition function. Line 4 stores the requests
generated on that transition. The requests generated during
the random walk are returned in line 6.

Learning the Distribution Online
It is unrealistic in practice to assume a fully observable dis-
tribution as input to the online optimization algorithm. Asa
consequence, this section investigates how to relax this as-
sumption by using machine learning techniques. It starts by
relaxing full observability before considering the case where
the distribution parameters are also unknown.

Partially Observable Distributions Even if a precise dis-
tribution is available for the requests, it is unreasonableto
assume that functionGETSAMPLE knows the current state of
the Markov model. Partial observability is a much more re-
alistic assumption adopted in many uncertainty frameworks
(e.g., (Kaelbling, Littman, & Cassandra 1998)). Under par-
tial observability, the stateSt is unknown and can only be
inferred through observations, that is through the set of re-
quests generated at each time step.

To infer the current state, the sampling algorithm makes
use of belief states, a fundamental idea from POMDP re-
search. More precisely, the algorithm maintains, for each
states ∈ S, a probabilityBt(s) of being in states at timet
and updates these probabilities after every observation. An
implementation of sampling under partial observability isas
follows:

GETSAMPLE-PO(t, ∆)
1 for s ∈ S
2 do Bt(s)← PR(s|Θ(t),Bt−1);
3 s← RANDOM(S, Bt);
4 return RANDOMWALK(s, ∆);

whereRANDOM(S, B) selects a requests in S with proba-
bility B(s). Line 2 updates the belief probabilities by con-
ditioning the probability of being in states at timet on the
belief states at timet − 1 and the requests observed at time
t. Line 3 chooses an initial state randomly using the belief
probabilities and line 4 returns a set of requests based on a
random walk beginning at states.

Structural Model of the Distribution In many circum-
stances, even partial observability is too strong a require-
ment. In particular, the structure of the distribution may
be known but not its parameters. To infer these parame-
ters, the implementation ofGETSAMPLE may resort to the
Baum-Welsch algorithm (Baum 1972; Charniak 1993) for
learning the parameters of a Markov model from a sequence
of requests. This learning algorithm starts by initializing the
transition probabilities arbitrarily. It then uses the existing
probabilities and the training sequence to refine the proba-
bilities. The process is repeated with the new probabilities
until the algorithm converges. The algorithm

GETSAMPLE-PO-TRAIN(t, ∆)

1 while Converging

2 do for s ∈ S

3 do αs(0) = Bt−λ(s);

4 for i← 1 . . . λ

5 do αs(i)←
∑

s′∈S
αs′ (i− 1)T (s′, s, Θ(t− λ + i));

6 βs(λ) = Bt(s);

7 for i← (λ − 1) . . . 0

8 do βs(i)←
∑

s′∈S
βs′(i + 1)T (s, s′, Θ(t− i));

9 for s ∈ S, s′
∈ S, w ∈ Ω

10 do Ĉ(s, s′, w)←
∑

λ

t=1
αs(t)T (s, s′, w)βs′(t + 1)

11 for s ∈ S, s′
∈ S, w ∈ Ω

12 do T (s, s′, w)←
Ĉ(s,s′,w)∑

s′′∈S,w′∈Ω
Ĉ(s,s′′,w′)

13 return GETSAMPLE-PO(t, ∆);

uses the requests from the lastλ time steps in order to train
the probabilities. Lines 3-5 compute the probabilities of be-
ing in a states at a timet given the current probabilities and
the training sequence up to timet. Similarly, lines 6-8 com-
pute the reverse, i.e. the probability of beginning at states at
a timet given the training sequence from timet to the end.
With these probabilities, lines 9-10 compute the probabilis-
tic counts for the number of times each transition is taken.
The transition probabilities are then updated in lines 11-12
using these counts. Once the algorithm has converged, line
13 returns a set of requests based on the learned parameters.

A critical drawback of the algorithm is the training time
which can be considerable. As a consequence, in the online
algorithm, some of the time allocated to optimizations must
now be allocated to training. This time tradeoff is discussed
at length in the experimental results where an effective ap-
proach to balance optimization and learning is proposed for
packet scheduling. Note however that the size of the train-
ing sequence is critical to obtain reasonable accuracy and
efficiency.

Sampling From Historical Data
The previous section assumed that the sampling algorithm
has some knowledge of the distribution. This section relaxes
this hypothesis even further and only assumes that histori-
cal data is available to the online algorithm. In continuous
online optimization, this assumption can be formalized by
assuming that the (unknown) input distribution is specified
by an ergodic process.2 In periodic online optimization, this
can be viewed as assuming the existence of past instances,
which is typically the case in courier services applications.
In both cases, the intuition is simply that the past is a good
predictor of the future, which is the only reasonable assump-
tion available.

Historical Averaging Historical averaging is a simple
implementation ofGETSAMPLE which looks at the pastλ
time steps and derives the probability that a request arrives at
any subsequent time step. Conceptually, this approximates
the overall output probability of the underlying (unknown)
distribution. The implementation

GETSAMPLE-A(t, ∆)
1 R← ∅;
2 for i← t− λ . . . t, r ∈ Θ(i)
3 do A(r)← A(r) + 1;
4 for r ∈ R
5 do P (r)← A(r)

λ
;

6 for i← 1 . . . ∆

2An ergodic process is a random process in which the time se-
ries produced are the same in statistical properties (Chatfield 2004).

7 do R← R ∪ RANDOM(P, R)
8 return R;

counts the number of times each possible output is observed
in the lastλ time steps (line 3) and uses these numbers to
compute a probability for the next output (line 5). Line 7
generates random requests based on the probabilities of the
possible outputs.

Historical Sampling One of the drawbacks of averaging
is that it loses the sequence structure (e.g., changes in re-
quest arrival rates).Historical samplingaims at overcoming
this drawback by using past subsequences as samples. Its
implementation

GETSAMPLE-S(t, ∆)
1 t′ ← RANDOM([0, t−∆]);
2 R← ∅;
3 for i← t′ . . . t′ + ∆
4 do R← R ∪Θ(i)
5 return R;

is amazingly simple: It randomly selects a position in the
past sequence of requests and generates a sample of size∆
from that starting position.

In addition to its conceptual and implementation simplic-
ity, historical sampling is appealling for a variety of reasons.
First, and contrary to historical averaging, it captures struc-
tural information on the sequence. Second, whenever the
underlying distribution is a Markov model, the resulting se-
quence corresponds to a random walk in the model from a
random state. As a consequence, historical sampling im-
plicitly implements a version of the partial observabilityal-
gorithm where the belief states are approximated by the state
frequencies. Third, in the case of periodic optimization, his-
torical sampling simply amounts to using past instances as
samples of the (unknown distribution) with the additional
benefit that the starting state is known in this case. As a
consequence, historical sampling is a simple and effective
technique to exploit historical data in continuous and peri-
odic online optimization.

Packet Scheduling
This section reports experimental results on the online
packet scheduling problem first studied in (Chang, Givan,
& Chong 2000). This networking application is of interest
experimentally since (1) the number of requests to consider
at each timet is small and (2) the offline algorithm can be
solved in polynomial time. As a result, it is possible to eval-
uate all the algorithms experimentally, contrary to vehicle
routing applications where this is not practical. The packet
scheduling is also interesting as it features a complex arrival
distribution for the packets based on Markov models.

The Offline Problem We are given a setJobsof jobs parti-
tioned into a set of classesC. Each jobj is characterized by
its weightw(j), its arrival datea(j), and its classc(j). Jobs
in the same class have the same weight (but different arrival
times). We are also given a schedule horizonH = [H, H]

0 20 40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

100

Maximum Number of Offline Optimizations

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss

O
G
LO
E
C
R

Figure 3: Fully Observable Sampling

during which jobs must be scheduled. Each jobj requires a
single time unit to process and must be scheduled in its time
window [a(j), a(j) + d], whered is the same constant for
all jobs (i.e.,d represents the time a job remains available to
schedule). In addition, no two jobs can be scheduled at the
same time and jobs that cannot be served in their time win-
dows are dropped. The goal is to find a schedule of max-
imal weight, i.e., a schedule which maximizes the sum of
the weights of all scheduled jobs. This is equivalent to min-
imizing weighted packet loss. More formally, assume, for
simplicity and without loss of generality, that there is a job
scheduled at each time step of the schedule horizon. Under
this assumption, a schedule is a functionσ : H → Jobs
which assigns a job to each time in the schedule horizon. A
scheduleσ is feasible if

∀ t1, t2 ∈ H : t1 6= t2 → σ(t1) 6= σ(t2)
∀ t ∈ H : a(σ(t)) ≤ t ≤ a(σ(t)) + d.

The weight of a scheduleσ, denoted byw(σ), is given by
w(σ) =

∑
t∈H w(σ(t)). The goal is to find a feasible sched-

uleσ maximizingw(σ). This offline problem can be solved
in quadratic timeO(|J ||H |).

The Online Problem The experimental evaluation is
based on the problems of (Chang, Givan, & Chong 2000;
Bent & Van Hentenryck 2004d), where all the details can be
found. In these problems, the arrival distributions are spec-
ified by independent MMs, one for each job class similar in
form as seen in Figure 2. Thus, each class can be thought of
as having its own black box for generating request samples.
The results are given for the reference 7-class problems and
for an online schedule consisting of 200,000 time steps. Be-
cause it is impractical to sample the future for so many steps,
the algorithms use a sampling horizon of 50, which seems to
be an excellent compromise between time and quality. The
regret function is given in (Bent & Van Hentenryck 2004b)
and consists of swapping a constant number of packets in
the optimal schedule.

Sampling with the Exact Distribution Figure 3 depicts
the average packet loss as a function of the number of avail-

0 20 40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

100

Maximum Number of Offline Optimizations

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss
O
G
LO
E−FO
C−FO
R−FO
E−PO
C−PO
R−PO

Figure 4: Partially Observable Sampling

able optimizationsO for the various algorithms on a variety
of 7-class problems when the Markov Model is fully ob-
servable. It also gives the optimal, a posteriori, packet loss
O. The results indicate the value of stochastic information
as algorithm E significantly outperforms the oblivious algo-
rithms G and LO and bridge much of the gap between these
algorithms and the optimal solution. Note that LO is worse
than G, illustrating the (frequent) pathological behaviorof
over-optimizing.

Consensus is dominated by E when the number of avail-
able optimizations increases, although consensus still pro-
duces significant improvements over the oblivious algo-
rithms. This is of course pertinent, since E is not practical
for many problems with time constraints. Finally, the bene-
fits of the regret algorithm are clearly apparent. AlgorithmR
indeed dominates all the other algorithms, including consen-
sus when there are very few optimizations (strong time con-
straints) and expectation even when there are a reasonably
large number of them (weak time constraints). Reference
(Bent & Van Hentenryck 2004b) also shows this to be the
case for complex online vehicle routing with time windows.

Partial Observability Figure 4 considers the case when
the Markov model is partially observable and compares it to
the fully observable case. It is interesting to note that there
is no significant degradation in solution quality, indicating
that maintaining the belief probabilities is sufficient, onthis
problem, to obtain good results.

Structural Model Figure 5 depicts the experimental re-
sults when the MM parameters are learned. In order to get
reasonable results,λ is set to 560. The results are compa-
rable to the results if the MM is fully observable. However,
these results are misleading, as they do not take into account
time spent in training. Figure 6 shows the rough amount
of time it takes to train on sequences of a certain size in
terms of the equivalent number of optimizations. As can be
seen from this plot, training on a sequence of length 560 is
roughly equivalent to performing 230 optimizations every
time step! If that is taken into account, the results look like

0 20 40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

100

Maximum Number of Offline Optimizations

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss

O
G
LO
E−FO
C−FO
R−FO
E−PO−TRAIN
C−PO−TRAIN
R−PO−TRAIN

Figure 5: Experimental Results for Packet Scheduling after
Learning the MM Parameters

0 50 100 150 200 250
0

100

200

300

400

500

600

Equivalent Number of Optimizations

T
ra

in
in

g
S

am
pl

e
S

iz
e

Optimization

Figure 6: Training vs. Optimization Time Tradeoff

Figure 7. To a certain extent, this limitation can be over-
come by reducing the size of the training sequence, i.e., 140
time steps, as depicted in Figure 8, albeit at a loss of over-
all solution quality. A more promising direction is to apply
the learning algorithm periodically (e.g., every 230 steps)
instead of at each time steps in order to amortize the cost
of training. This is shown in Figure 9, which indicates the
feasibility of sophisticated learning techniques in an online
setting. Indeed, the loss in solution quality compared to the
exact distribution is small and the improvement with respect
to oblivious algorithms is significant.

Historical Averaging Figure 10 depicts the experimental
results for historical averaging. These are the weakest re-
sults presented here, yet this simple method still produces
significant improvements over the oblivious algorithms. The
results are given forλ = 500, which achieves the best results
experimentally.

Historical Sampling Finally, Figure 11 depicts the exper-
imental results for historical sampling which are very inter-

0 50 100 150 200 250 300 350 400
65

70

75

80

85

90

95

100

Maximum Number of Offline Optimizations

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss
O
G
LO
E−FO
C−FO
R−FO
E−PO−TRAIN
C−PO−TRAIN
R−PO−TRAIN

Figure 7: Experimental Results for Packet Scheduling: In-
cluding the Learning Time

0 50 100 150 200
65

70

75

80

85

90

95

100

Maximum Number of Offline Optimizations

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss

O
G
LO
E−FO
C−FO
R−FO
E−PO−TRAIN
C−PO−TRAIN
R−PO−TRAIN

Figure 8: Experimental Results for Packet Scheduling: In-
cluding the Learning Time on Sorter Sequences

esting. Indeed, historical sampling produces the best results
for the most advanced algorithm: the regret algorithm R. (It
is also superior for algorithm E). In other words, without
any knowledge of the distribution and without inducing any
time overhead, historical sampling is as effective as the par-
tial observability model that maintains belief states based on
observations.

Vehicle Routing
We now evaluate historical sampling on a significantly more
complicated problem: online multiple vehicle routing with
time windows. This problem was studied initially in (Bent
& Van Hentenryck 2004c) to show the value of stochastic
information in vehicle routing. It is a periodic online opti-
mization problems where historial data is typically available.

Problem Formulation The vehicle routing problems are
specified formally in (Bent & Van Hentenryck 2004c) where
all the details can be found. Each problem contains a depot,
a number of customer regions and a number of customer ser-

0 20 40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

100

Maximum Number of Offline Optimizations

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss

O
G
LO
E−FO
C−FO
R−FO
E−PO−TRAIN
C−PO−TRAIN
R−PO−TRAIN

Figure 9: Experimental Results for Packet Scheduling when
MM Parameters are Unknown: Balancing Optimization and
Training

0 20 40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

100

105

Maximum Number of Offline Optimizations

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss

O
G
LO
E−LO
C−LO
R−LO
E−A
C−A
R−A

Figure 10: Experimental Results on Packet Scheduling for
Historical Averaging

vice requests from the regions. Each request has a demand,
a service time, and a time window specified by an interval
[e, l], which represents the earliest and latest possible arrival
times respectively. There are a number of identical vehi-
cles available for use, each with capacityQ. A vehicle route
starts at the depot, serves some customers at most once, and
returns to the depot. The demand of a route is the summa-
tion of the demand of its customers. A routing plan is a
set of routes servicing each customer exactly once. A so-
lution to the offline VRPTW is a routing plan that satisfies
the capacity constraints on the vehicle and the time window
constraints of the requests. The objective is to find a so-
lution maximizing the number of served customers. In the
dynamic VRPTW, customer requests are not known in ad-
vance and become available during the course of the day. In
general, a number of requests are available initially.

The online VRPTW is much more complicated than the
online packet scheduling and does not fit directly in the
stochastic framework presented earlier. First, decisionsare
triggered by two types of events: new customer requests and

0 20 40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

100

Maximum Number of Offline Optimizations

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss
O
G
LO
E−FO
C−FO
R−FO
E−S
C−S
R−S

Figure 11: Experimental Results on Packet Scheduling for
Historical Sampling

the arrival of a vehicle at a customer site. Second, a de-
cision consists of choosing which customers to serve next
on a given vehicle. Third, the online algorithm must de-
cide whether to accept or reject customer requests immedi-
ately and must service the accepted requests. Finally, the
VRPTW is a hard NP-complete problem whose instances
are extremely difficult to solve optimally. Only 2 to 10 opti-
mizations can be solved in between two events and the num-
ber of events is large (e.g., 50 different requests). Hence,the
expectation method is not practical at all.

Experimental Setting The experimental results are based
on the five hardest class-4 problems from (Bent & Van Hen-
tenryck 2004c), where all details can be found. They are
derived from the Solomon benchmarks which are very chal-
lenging and involve 100 customers. The instances exhibit
various degrees of dynamism (i.e., the ratio between known
and dynamic customers), different distributions of early and
late requests, as well as time windows of very different sizes.
Hence they cover a wide spectrum of possibilities and struc-
tures. The number of vehicles available for the dynamic
algorithms was determined by solving the offline problems
and adding two vehicles.

Historical sampling has either 10 or 1000 past samples at
its disposal depending on the experiments. For a given time
t, the implementation of methodGETSAMPLE in this peri-
odic application consists of choosing one of these past sam-
ples and returns all the requests occurring after timet. Com-
pared to earlier algorithms which assumed perfect knowl-
edge of the distribution, historical sampling loses two kinds
of information. On the one hand, it works from a limited
pool of samples and, on the other hand, it loses some de-
pendency information. Indeed, with a perfect distribution,
the arrival of actual requests affects the arrival probability of
future requests, i.e. the arrival of a request in a region and
time period eliminates future requests from that region in the
same time period (Bent & Van Hentenryck 2004c).

Experimental Results Table 1 report some preliminary
results to evaluate the potential of historical sampling. It
depicts the number of missed customers for the consensus
(C) and regret (R) algorithms using the actual distribution,
as well as the same results when historical sampling is used
instead of the actual distribution (HS(C) and HS(R)). Each
entry in the table is the average of 20 independent runs with
5 optimizations being allowed in between events. The al-
gorithm all implement the least commitment approach de-
scribed in (Bent & Van Hentenryck 2004a). Historical sam-
pling was evaluated with a historical data containing 10 and
1000 data points. These preliminary results indicate that
historical sampling performs very well on these problems.
When the historical data (1000 data points) is large, no sig-
nificant difference can be observed between historical sam-
pling and the actual distribution. When the historical datais
limited (10 data points), the quality of the solutions seems
to decrease slighly for consensus, while there is no real dif-
ference for regret. The fact thatHS10 may sometimes out-
performHS1000 was very puzzling at first sight. A careful
analysis indicated that the samples taken were luckily simi-
lar to the actual future requests.

Conclusion
This paper focused online stochastic optimization problems
where time constraints severely limit the number of opti-
mizations which can be performed at decision time and/or in
between decisions. The last couple of years witnessed sig-
nificant progress in this area, including the design of novel
algorithms exploiting stochastic information to make better
scheduling and routing decisions. Experimental results have
shown that, whenever a distribution of future requests is
available for sampling, these algorithms may produce signif-
icant improvements in solution quality, while running within
the time constraints.

This paper reconsiders the fundamental assumption un-
derlying these algorithms: that a distribution of future re-
quests, or an approximation thereof, is available for sam-
pling. It relaxed that assumption and studied whether the un-
derlying distribution can be learned (when part of its struc-
ture is known) or whether historical data can exploited for
sampling purposes. Both continuous and periodic online op-
timization were considered.

As far as the machine learning approach is concerned,
the paper showed that techniques such as belief states and
the Baum-Welsch algorithm for learning MMs can be engi-
neered to work in an online setting. The experimental results
on packet scheduling are very promising: they indicate that
the approach preserves most of the benefits of the online al-
gorithms working on the actual distribution.

As far as historical data is concerned, the paper proposed
the idea of historical sampling, which consists of exploit-
ing historical data for sampling, i.e., earlier sequences of
requests in the case of continuous online optimization and
past instances in the case of periodic online optimization.
The experimental results, both on packet scheduling (contin-
uous optimization) and vehicle routing (periodic optimiza-
tion), shows that historical sampling is extremely effective

Problem C HS(C)10 HS(C)1000 R HS(R)10 HIS(R)1000

20-20-60-rc104-1 13.50 16.65 14.30 10.65 10.45 9.45
20-20-60-rc104-2 14.55 15.00 13.60 13.05 11.95 11.70
20-20-60-rc104-3 11.45 12.75 11.60 8.30 9.00 9.25
20-20-60-rc104-4 14.00 14.10 15.40 9.40 9.35 10.25
20-20-60-rc104-5 12.80 14.95 16.00 9.90 9.70 8.40

Table 1: Distribution and Historical Sampling

and produces the same solution quality as the actual distri-
bution.

These results clearly boost the potential of online stochas-
tic optimization, since they significantly weaken their main
assumption. In addition to cases where predictive models
are available, they also show that online stochastic algoritms
can be applied under the weak assumption that the future
will resemble the past. In other words, the online algorithms
only require the existence of an underlying, unknown, er-
godic process (continuous optimization) or the availability
of historical data which are representative of what the future
will hold.

This research also opens up many avenues for future re-
search. In particular, it would be interesting to generalize
the machine learning approach to other classes of distribu-
tions. It also seems important to measure the sensitivity of
historical sampling on the quality of the historical data . Fi-
nally, the quality of the results could also be improved by
filtering the historical data to reflect the online observations.
Indeed, it is likely that, in many periodic problems, the his-
torical data can be classified into different categories each
of which modeling different types of periods. Recognizing
these categories and restricting the sampling to the relevant
ones may give the algorithm more precise predictions.

Acknowledgements
This research is partially supported by NSF ITR Award
DMI-0121495. We would also like to thank Tom Dean for
his helpful pointers on machine learning.

References
Baum, E. 1972. An Inequality and Associated Maximiza-
tion Technique in Statistical Estimation for Probabilistic
Functions of a Markov Process.Inequalities3:1–8.

Bent, R., and Van Hentenryck, P. 2004a. Online Stochas-
tic and Robust Optimization. InProceedings of the Ninth
Asian Computing Science Conference (ASIAN).

Bent, R., and Van Hentenryck, P. 2004b. Regrets Only!
Online Stochastic Optimization Under Time Constraints.
In Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAAI), 501–506.

Bent, R., and Van Hentenryck, P. 2004c. Scenario-
Based Planning for Partially Dynamic Vehicle Routing
with Stochastic Customers.Operations Research52 (6).

Bent, R., and Van Hentenryck, P. 2004d. The Value of
Consensus in Online Stochastic Scheduling. InProceed-

ings of the Fourteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS), 219–226.
Birge, J., and Louveaux, F. 1997.Introduction to Stochas-
tic Programming. Springer Verlag.
Chang, H.; Givan, R.; and Chong, E. 2000. Online
Scheduling Via Sampling. InProceedings of the Fifth In-
ternational Conference on Artificial Intelligence Planning
Systems (AIPS), 62–71.
Charniak, E. 1993.Statistical Language Learning. MIT
Press.
Chatfield, C. 2004.The Analysis of Time Series: An Intro-
duction. Chapman and Hall.
Feller, W. 1957.An Introduction to Probability Theory and
its Applications. John Wiley and Sons.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and Acting in Partially Observable Stochastic Do-
mains.Artificial Intelligence101 (1-2):99–124.

